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Topics to be covered

1. Step-by-step description of analytical reconstruction algorithms

involving filtering and backprojecting

2. Sampling requirements for tomographic reconstruction

3. Projection as a matrix operation

4. Backprojection as a matrix operation

5. Reconstructing using the pseudoinverse

6. Relationship between pseudoinverse method and algorithms

based on the filtering and backprojecting
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Reading

Additional reading:

• Cho, “Foundations of Medical Imaging”, John Wiley and Sons

(1993), Chapter 3.

Advanced reading:

• Natterer, “The Mathematics of Computerized Tomography”,

John Wiley and Sons (1986), Chapters I and II.
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Backprojection of convolution-filtered projections (BCFP)

This algorithm is more commonly referred to as the convolution

backprojection algorithm.

Given a set of I angular projections p(θi, s) reconstruct f̃(x), an

approximation of f(x) by:

1. Taking the derivatives:

p′(θi, s) =
dp(θi, s)

ds
i = 1, 2, . . . , I

2. Applying Hilbert transform to each p′(θi, s):

p̃(θi, s) = p′(θi, s) ∗
1

2π2s
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Backprojection of convolution-filtered projections (BCFP)

3. Backprojecting all I filtered projections:

f̃(x) = BP
{

p̃(θi, s)
}

to get the reconstructed distribution.

Note: Steps (1) and (2) can be replaced by the step:

p̃(θi, s) = p(θi, s) ∗ h(s)

where h(s) is the inverse FT of any of the modified ramp filters.
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Backprojection of Fourier-filtered projections (BPFP)

This algorithm is more commonly referred to as the filtered

backprojection algorithm.

Given a set of I angular projections p(θi, s) reconstruct f̃(x), an

approximation of f(x) by:

1. Transforming each projection using the 1D FT:

P (θi, w) = F1

{

p(θi, s)

}

i = 1, 2, . . . , I

2. Multiplying each P (θi, s) with the ramp filter or modified ramp

filter H(w):

P̃ (θi, w) = P (θi, w)×H(w)
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Backprojection of Fourier-filtered projections (BPFP)

3. Applying the inverse 1D FT to each Fourier domain projection:

p̃(θi, s) = F−1
1

{

P̃ (θi, w)

}

4. Backprojecting all I filtered projections:

f̃(x) = BP
{

p̃(θi, s)
}

to get the reconstructed distribution.
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Fourier-filtered backprojection algorithm (FFBP)

Given a set of I angular projections p(θi, s) reconstruct f̃(x), an

approximation of f(x) by:

1. Backprojecting all the known projections:

fBP(x) = BP
{

p(θi, s)
}

i = 1, 2, . . . , I

2. Fourier transforming the backprojection image using the 2D FT:

FBP(ξ) = F2

{

fBP(x)

}
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Fourier-filtered backprojection algorithm (FFBP)

4. Multiplying FBP(ξ) by the cone filter H(ξ) = ‖ξ‖ or a modified

version thereof:

F̃ (ξ) = FBP(ξ)×H(ξ)

5. Applying the inverse 2D FT to the filtered transform:

f̃(x) = F−1
2

{

F̃ (ξ)

}
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Space-filtered backprojection algorithm (SFBP)

Given a set of I angular projections p(θi, s) reconstruct f̃(x), an

approximation of f(x) by:

1. Backprojecting all the known projections:

fBP(x) = BP
{

p(θi, s)
}

i = 1, 2, . . . , I

2. Inverse Fourier transforming the ideal or modified cone filter H(ξ)

to get its 2D point-spread function h(x).

3. Convolving (in 2D) fBP(x) with the PSF h(x) to get the

reconstructed image:

f̃(x) = fBP(x) ∗ h(x)
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Sampling considerations
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Sampling considerations: Angular sampling requirements

• We now address the sampling requirements for a discrete imaging

tomographic system that produces I regularly spaced projections

over 180 degrees. We assume that the highest spatial frequency

(along all directions) inside the imaged distribution f(x) is ρmax.

• Consider an object that can be enclosed by a circle of diameter D

centered at the center of camera rotation.

• Let ∆θ represent the angular spacing between successive projections.

Then the arc subtended by ∆θ on the circle has length ∆a = D
2
∆θ.

• This arc spans the longest distance between adjacent samples.

To prevent aliasing, we must ensure that this arc is sampled at over

twice the Nyquist frequency ρmax.
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Sampling considerations: Angular sampling requirements

• To satisfy the sampling theorem, we must thus choose ∆θ to satisfy:

1

∆a
= 2ρmax

Substituting our expression for ∆a gives:

2

D∆θ
= 2ρmax

and so we must have

∆θ <
1

ρmax D

• Since we do not typically know what ρmax is for the distribution

f(x) (this is why we’re trying to look inside it in the first place), we

set ρmax to the resolution of the imaging system. With this choice,

we avoid all aliasing other than that aliasing that is unavoidable.

(Remember that it is not possible to antialias filter the projections

before we sample them, so detail smaller than twice the instrument’s

sampling interval will be aliased).

13

Sampling considerations: Radial sampling requirements

• When a camera samples a single angular projection, it collects the

photons into bins. Each bin often corresponds physically to a single

detector.

• We will assume that we have J bins along the s-axis.

• If the highest frequency along any direction in the distribution is

ρmax, then we need to make sure that the interbin spacing ∆s

satisfies:

∆s <
1

2ρmax
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Sampling considerations: Sampling requirements

• What is the minimum number of bins that we need?

J =

⌈

D

∆s

⌉

=
⌈

2Dρmax

⌉

where d·e represents the “ceiling” operator (finds the next highest

integer for non-integer arguments and the same integer for integer

arguments)

• Based on the earlier discussion, what is the minimum number of

angles needed if we sample over 180 degrees (as we generally do in

transmission tomography)?

I =

⌈

π

∆θ

⌉

=
⌈

πD ρmax

⌉
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Discrete Radon transform as a matrix operation

Because each projection bin measurement can be expressed in terms of a

linear combination of the pixel values µn (on the grid on which the

image is reconstructed), we can represent the discrete projection

operation as a matrix operation.
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Discrete Radon transform as a matrix operation

• The quantities fn
ij are called geometric weighting factors. It is

proportional to the area of intersection of the backprojection of

the jth bin of the ith projection, with the nth pixel.

• The value fn
ij represents the contribution of the “mass” of nth pixel

to the jth bin of the ith projection.

• Consequently, there are N ×M × I × J weighting factors.

• We will now show how these factors can be placed in a matrix F so

that the vector of projection measurements p can be expressed in

terms of the pixel values as:

p = Fµ
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Discrete Radon transform as a matrix operation
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Discrete Radon transform as a matrix operation
To allow matrix expression of the projection (discrete Radon transform)

operator, we have:

1. Stacked the N columns of the image pixel values on top of each

other to form the N ×M vector µ

2. Stacked the I angular projections of J bins each into the I × J

vector p.

3. Placed fn
ij at row j + (i− 1)× J and column n of F.

• F is in practice a very large matrix of dimension IJ ×MN . If we

have a 512× 512 image to reconstruct and 512 projections of 512

bins each, F has dimension 262144× 262144. This corresponds to 68

billion elements, requiring 549 gigabytes of memory for double

precision storage.

• Because relatively few pixels contribute to each bin, F contains

mostly zeros. It is a sparse matrix and so only the non-zero

elements are stored in practice.

19

Discrete Radon transform as a matrix operation

Five minute exercise: Try to work out how we can automatically

calculate the fn
ij for a specific imaging geometry.
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Discrete Radon transform as a matrix operation
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Discrete Radon transform as a matrix operation
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Discrete backprojection as a matrix operation

• We will now show that backprojection of a set of discrete projections

can be found using:

µ
BP

= F
T
p

• We will see that the nth row of FT gives us all the weighting factors

necessary to calculate the contributions to the nth pixel of each of

the projection bins

• Consequently, when we multiply the nth row by the projection

vector p, we get the intersection-area-weighted sum of the

contributions of all the bins to the nth pixel. This is, by definition,

backprojection.
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Discrete backprojection as a matrix operation
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Pseudoinverse reconstruction algorithm

• Since we now have a set of simultaneous equations for the discrete

Radon transform (forward problem):

p = Fµ

we are in a position to reconstruct the distrubution µ using the

pseudoinverse (inverse problem):

µ̃ = F
+
p = (FT

F)−1
F

T
p

• It is instructive to identify FTp with the backprojection image

giving:

µ̃ = (FT
F)−1 BP{p} = (FT

F)−1
µ

BP

where µ
BP

, BP{p} is the backprojection image stacked in a

column vector.
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Pseudoinverse reconstruction algorithm

• Remember that in the space-filtered backprojection (SFBP)

algorithm we had:

µ̃ = h(x) ∗ BP{p}

where h(x) was the inverse FT of the cone filter or modifed version

thereof.

• Now recall also that we showed that the 2D convolution operation

could be expressed in matrix form as:

f = Hg

where H was a block Toeplitz matrix.

• So, we can then further identify:

H = (FT
F)

f = µ
BP

g = µ̃
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• Therefore:

µ
BP

= (FT
F)µ̃

and, as we had before:

µ̃ = (FT
F)−1

µ
BP

• We can interpret:

µ
BP

= (FT
F) µ̃

as a convolution operation that yields the backprojection image as

the convolution of the true reconstruction with a 2D filter h′(x).

The block Toeplitz matrix H = (FTF) contains samples of h′(x)

and effects this convolution.

• This enables us to interpret:

µ̃ = H
−1

µ
BP

= (FT
F)−1

µ
BP

= (FT
F)−1

F
T
p = F

+
p

as a deconvolution operation, where we deblur the backprojection

image by deconvolving it and the blurring kernel h′(x), where

H ′(ξ) = 1/H(ξ) (the inverse of the deblurring cone filter).
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Pseudoinverse reconstruction algorithm

• If the pseudoinverse and SFBP algorithms are equivalent, then

(FTF), should be block Toeplitz, which indeed it is.

• We conclude that the pseudoinverse has a special interpretation as

the matrix that carries out the deconvolution of the

backprojection image and the PSF of the blurring kernel.

• This is equivalent to convolving the backprojection image with the

PSF of the cone filter. This is identical to the SFBP algorithm.
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Pseudoinverse reconstruction algorithm
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